Course: Chemistry 11

Teacher Name: Sheloah Klausen and Nicholas Ottenbreit

Contact Information: sklausen@sd44.ca, nottenbreit@sd44.ca

Course Description:

Chemistry 11 is an introduction into the field of applied chemistry that focuses primarily on the nature of matter. Throughout the course, students will learn the fundamental skills related to the gravimetric analysis of chemical reactions, atomic theory, solution chemistry, and the mole. Much of the course material is laboratory and problem based, with a significant mathematical component, therefore a sound working knowledge of the chemistry topics covered in science 10 as well as a strong standing in mathematics 10 will be essential to success. The goal of this course is to provide students with the knowledge of chemistry by giving them the skills they need to conceptualize rather than memorize chemistry.

Summer Learning Beliefs:

Summer Learning provides an engaging learning environment where all students can challenge themselves and fulfill their learning goals. To ensure this, students will:

- abide by the student Code of Conduct
- adhere to the Academic Honesty Policy
- adhere to the Summer Learning Student Engagement policy
- respect themselves and others
- attend every class and be punctual
- inquire, think, and engage to the best of their ability
- access technology in class when instructed to do so and for learning purposes only
- challenge themselves and have fun learning

All Summer Learning policies can be accessed at:

https://www.sd44.ca/school/summer/policies/Pages/default.aspx#/=

Course Plan:

•

The Mathematical Toolkit	Essential Questions How does mathematics inform our practice as chemists, and allow us to justify process decisions? How would you estimate the uncertainty in a measurement, and how does using significant figures communicate uncertainty?	Dimensional analysis: factor-label method (unit-analysis method), calculation of mass and molar quantities (using significant figures).	Curricular Competencies Use appropriate SI units and appropriate equipment, including digital technologies, to systematically and accurately collect and record data. Apply the concepts of accuracy and precision to experimental procedures and data, including significant figures, uncertainty and scientific notation. Evaluate methods and experimental conditions, including identifying sources of error or uncertainty, confounding variables, and possible alternative	This is not a standalone unit, it will be evaluated throughout the course.
The Nature of Matter	How does the quantum mechanical model extend our understanding of the atom?	Electron configuration molecular geometry, valence shell electron pair repulsion (VSEPR) theory. Chemical bonding Lewis structures of compounds, polarity, covalent and hydrogen bonding, intra- and intermolecular forces, impact on properties.	explanations and conclusions. Use knowledge of scientific concepts to draw conclusions that are consistent with evidence. Construct, analyze, and interpret graphs of electronegativity, atomic radii, and ionic radii. Collaboratively and individually plan, select, and use appropriate investigation methods, including field work and lab experiments, to collect reliable data (qualitative and quantitative).	Laboratory activities, solo and collaborative work, summative assessments.

•

The Mole	How has the mole	The mole as the	Analyze cause-and-	
THE WILL	as a quantity	fundamental unit of	effect relationships.	
	made chemical	reaction analysis.	circui relationships.	
		reaction analysis.	Formulate physical or	
	analysis more		mental theoretical	
	elegant, and		models to describe a	
	attainable?		phenomenon.	
			prierionierion.	
			Collaboratively and	
			individually plan, select,	
			and use appropriate	Summative,
			investigation methods,	laboratory and
			including field work and	formative
			lab experiments, to	assessments. The
			collect reliable data	mole is a fundamental
			(qualitative and	concept and you will see it throughout the
			quantitative).	course.
				course.
			Collaboratively and	
			individually plan, select,	
			and use appropriate	
			investigation methods,	
			including field work and	
			lab experiments, to	
			collect reliable data	
			(qualitative and	
		Danation -	quantitative)	
Chemical	How would you	Reactions	Formulate physical or mental theoretical	
Reactions	measure negative	predicting products,	models to describe a	Laboratory activities,
	and positive impacts of	reactants and energy changes (ΔH)		solo and POGIL
	chemical reactions	Chemical processes First	phenomenon.	collaborative work,
	on human health,	Peoples traditional	Use knowledge of	formative and
	society or the	practices (e.g., tanning	scientific concepts to	summative
	environment in	hides; preparation of	draw conclusions that	assessments.
	your local	food, soap, and natural	are consistent with	Project exploring
	community?	bleach), smelting, pulp	evidence.	place-based
	, , , , , , , , , , , , , , , , , , , ,	and paper production,		chemistry in BC and
		food chemistry,	Analyze cause-and-	how it contributes
	Why do some	photosynthesis and	effect relationships.	positively, and
	materials dissolve	cellular respiration,	·	negatively to the
	in water or other	development of	Collaboratively and	province including
	ווו water טו טנוופו	petrochemical smog.	individually plan, select,	economically,
	liquide but athers	petrochennical sinog.	, p.a, c,	
	liquids, but others	Green chemistry	and use appropriate	environmentally and
	liquids, but others do not?	·		socioculturally.
	•	Green chemistry	and use appropriate	
	•	Green chemistry development of	and use appropriate investigation methods,	

	1		1	
		on the environment (e.g., reducing toxicity, designing benign solvents, increasing energy efficiency). Solubility: dissociation of ions, dissociation equations.	(qualitative and quantitative).	
Stoichiometry	What variables affect solubility, concentration (molarity), and conductivity? How could you use solution chemistry analysis techniques to investigate local water or soil samples?	Stoichiometric calculations using significant figures, mass, number of molecules, gas volumes, molar quantities, excess and limiting reactants. Stoichiometric calculations in aqueous solutions: Molarity, dilution effect, concentration of ions in solution when two, solutions are mixed. Analysis techniques: e.g., dissolved oxygen, pH, nitrates, phosphorus.	Formulate physical or mental theoretical models to describe a phenomenon. Seek and analyze patterns, trends, and connections in data, including describing relationships between variables, performing calculations, and identifying inconsistencies.	Laboratory activities, solo and collaborative work, formative and summative assessments.
Organic Chemistry	How do organic compounds differ in structure and properties? How do the structure and geometry of organic compounds contribute to their usefulness in medicine, and other applications?	Organic compounds names, structures, geometry. Applications of organic chemistry First Peoples traditional practices (e.g., medicines), pharmaceuticals, petrochemicals, polymers, cosmetics, metabolism, agriculture, food, biotechnology.	Demonstrate an awareness of assumptions, question information given, and identify bias in their own work and in primary and secondary sources. Consider social, ethical, and environmental implications of the findings from their own and others' investigations.	Laboratory activities, solo and collaborative work, formative and summative assessments.

Using knowledge shared by First Peoples, explore the uses of traditional medicines. What medicines have been used? Which particular health conditions are/were they used for?	Use knowledge of scientific concepts to draw conclusions that are consistent with evidence.
---	---

Grade Descriptors:

"A" quality evidence of learning....

Produces high-quality, frequently innovative work. Communicates scientific ideas to connect and synthesize concepts and skills learned over time. Consistently demonstrates sophisticated critical and creative thinking. Collects, presents, and correctly transforms experimental data. Interprets, analyzes and critiques scientific findings and experimental data. Frequently transfers and extends knowledge and skills and uses concepts to solve non-routine, real-world problems, displaying initiative and expertise in their approach. Virtually no support is needed. Mistakes made are not reflective of gaps or deficiencies in mastery.

"B" quality evidence of learning....

Sometimes produces high-quality, innovative work. Communicates scientific ideas to compare and critique concepts and skills learned over time. Consistently demonstrates a degree of critical and creative thinking. Collects and presents scientific data in an appropriate manner. Assesses, interprets, and revises scientific findings and experimental data. Transfers knowledge and skills and uses concepts to consistently solve routine, real-world problems correctly with minimal guidance and occasional periods of greater support, with some mistakes sometimes indicative of gaps in mastery.

"C" quality evidence of learning....

Produces work of an acceptable, and inconsistent quality. Communicates a basic understanding of scientific concepts and operates superficially within a scientific contextual framework. Displays an emergent level of application when it comes to critical thinking skills. Collects scientific data in an appropriate manner. Is inflexible in the use of knowledge and skills, requiring moderate to high levels of support even in familiar classroom situations. Makes attempts to use knowledge, skills and scientific concepts to solve routine, real-world problems, with frequent mistakes indicative of gaps in mastery.

Resources:

Hebden Chemistry 11: A Workbook For Students

We would like to thank the Coast Salish people, specifically the Skwxwú7mesh Nation and Tsleil-Waututh Nation, on whose unceded traditional territory the North Vancouver School District resides. We value the opportunity to learn, share and grow on this traditional territory.