**Course:** Science 10

Teacher Name: Peter Bond

Contact Information: pbond@sd44.ca



# Course Description:

Science 10 introduces inheritance and its relationship to DNA structure and how genetic engineering affects society. Chemical processes and energy flow in systems are explored in the universe, climate, and chemical reactions. Relationships, patterns and connections are made between various perspectives in science such as physics, chemistry, genetics, and astronomy. Communicating about science in the form of visual (online) presentations and media will be heavily stressed throughout the course.

# Summer Learning Beliefs:

Summer Learning provides an engaging learning environment where all students can challenge themselves academically and fulfill their learning goals. To ensure this, students will:

- abide by the student Code of Conduct
- adhere to the Academic Honesty Policy
- adhere to the Summer Learning Student Engagement policy
- respect themselves and others
- attend every class and be punctual
- inquire, think, and engage to the best of their ability
- access technology in class when instructed to do so and for learning purposes only
- challenge themselves and have fun learning

All Summer Learning policies can be accessed at: https://www.sd44.ca/school/summer/policies/Pages/default.

# Course Syllabus:

| Unit             | Essential<br>Questions | Content            | Curricular Competencies          | Assessment Task         |
|------------------|------------------------|--------------------|----------------------------------|-------------------------|
| Unit 1:          | Why study the          | Formation of the   | Demonstrate a sustained          | Astronomy Inquiry       |
| Astronomy        | evolution of           | universe           | intellectual curiosity about the | Research Project:       |
|                  | the universe?          | -Big Bang Theory   | Universe.                        | Students will inquire   |
| Big Idea: The    |                        | -Components of the |                                  | into topics of personal |
| formation of the | How did the            | Universe over time | Consider the changes in          | interest relating to    |
| universe can be  | Universe               |                    | knowledge over time as tools     | Astronomy and the       |
| explained by the | begin? How             | Astronomical data  | and technologies have            | Universe.               |
| big bang theory. | will it end?           | and collection     | developed                        |                         |
|                  |                        | methods            |                                  | Learning evidence       |
|                  |                        |                    | Use knowledge of scientific      | includes note-taking,   |
|                  |                        |                    | concepts to draw conclusions     | quizzes, lab reports,   |
|                  |                        |                    |                                  | model-building,         |



|                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                           | that are consistent with evidence                                                                                                                                                                                                                                                                            | brainstorming,<br>designing, and<br>reflection.                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                      |                                                                                                                                                           |                                                                                                                                                                                           | Express and reflect on a variety of experiences, perspectives, and worldviews through place                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |
| Unit 2: Physics  Big Idea: Energy is conserved, and its transformation can affect living things and the environment. | What energy choices can we make to combat climate change?  Do the benefits of harnessing nuclear energy justify the global consequences of nuclear waste? | Law of conservation of energy  Potential and Kinetic energy  Transformation of energy  Local and global impacts of energy transformations from technologies  Nuclear energy and radiation | Make observations aimed at identifying their own questions, including increasingly complex ones, about the natural world  Assess risks and address ethical, cultural, and/or environmental issues associated with their proposed methods and those of others  Experience and interpret the local environment | Structured Inquiry into Global Energy Sources: Students will conduct an analysis of media and biases in communication of science, sustainability, and climate change.  Learning evidence includes note-taking, quizzes, reading and analyzing articles, compilation of resources, and writing report drafts. |
| Unit 3:<br>Chemistry                                                                                                 | What is the importance of balance in                                                                                                                      | Rearrangements of atoms in chemical reactions                                                                                                                                             | Formulate multiple hypotheses and predict multiple outcomes                                                                                                                                                                                                                                                  | Experimental Lab Design and analysis of a chemistry concept,                                                                                                                                                                                                                                                 |
| Big Idea: Energy<br>change is<br>required as                                                                         | chemical reactions?                                                                                                                                       | Acid-base chemistry                                                                                                                                                                       | Collaboratively and individually plan, select, and use appropriate investigation                                                                                                                                                                                                                             | implementing the skills<br>learned in class.                                                                                                                                                                                                                                                                 |
| atoms rearrange<br>in chemical<br>processes.                                                                         | How can we know how atoms interact if we cannot see them?                                                                                                 | Law of conservation of mass  Energy change                                                                                                                                                | methods, including field work<br>and lab experiments, to collect<br>reliable data (qualitative and<br>quantitative)                                                                                                                                                                                          | Learning evidence includes note-taking, quizzes, lab reports, model-building,                                                                                                                                                                                                                                |
|                                                                                                                      |                                                                                                                                                           | during chemical reactions  Practical applications and implications of chemical processes, including First People's Knowledge                                                              | Evaluate their methods and experimental conditions, including identifying sources of error or uncertainty, confounding variables, and possible alternative explanations and conclusions                                                                                                                      | brainstorming, designing, writing an Open Design Lab, and reporting conclusions.                                                                                                                                                                                                                             |
| Unit 4: Genetics                                                                                                     | What makes you, you?                                                                                                                                      | DNA Structure and Function                                                                                                                                                                | Apply First Peoples perspectives and knowledge,                                                                                                                                                                                                                                                              | Guided Inquiry Project:<br>Students will inquire                                                                                                                                                                                                                                                             |
| Big Idea: DNA is<br>the basis for the<br>diversity of                                                                | Who should have the                                                                                                                                       | Patterns of Inheritance                                                                                                                                                                   | other ways of knowing, and local knowledge as sources of information                                                                                                                                                                                                                                         | into topics of personal<br>interest relating to the<br>applications of genetics                                                                                                                                                                                                                              |
| diversity of                                                                                                         |                                                                                                                                                           | IIIICITtarice                                                                                                                                                                             | IIIIOIIIIatioii                                                                                                                                                                                                                                                                                              | applications of genetics                                                                                                                                                                                                                                                                                     |



| con  | ntrol, and  | Mechanisms for       | Consider social, ethical, and   | AND/OR their family      |
|------|-------------|----------------------|---------------------------------|--------------------------|
| owr  | nership of  | Diversity            | environmental implications of   | history.                 |
| an o | organism's  |                      | the findings from their own     |                          |
| gen  | netic make- | Applied Genetics and | and others' investigations      | Learning evidence        |
| up?  | ?           | Ethical              |                                 | includes note-taking,    |
|      |             | Considerations       | Consider the role of scientists | quizzes, research,       |
|      |             |                      | in innovation                   | drafts, compilation of   |
|      |             |                      |                                 | resources, design plan,  |
|      |             |                      | Formulate physical or mental    | collaboration with       |
|      |             |                      | theoretical models to describe  | experts, and reflection. |
|      |             |                      | a phenomenon                    |                          |

# Grade Descriptors:

#### "A" quality evidence of learning....

Consistently produce high-quality, frequently innovative work. Communicate scientific ideas to connect and synthesize concepts and skills learned over time. Consistently demonstrate sophisticated critical and creative thinking. Collect, present, and (correctly) transform experimental data. Interpret, analyze and critique scientific findings and experimental data. Frequently transfers knowledge and skills and use concepts to solve non-routine problems.

# "B" quality evidence of learning....

Sometimes produce high-quality, innovative work. Communicate scientific ideas to compare and critique concepts and skills learned over time. Consistently demonstrate a degree of critical and creative thinking. Collect and present scientific data in an appropriate manner. Assess, interpret, and revise scientific findings and experimental data. Transfer knowledge and skills and use concepts to consistently solve routine problems correctly with few mistakes.

# "C" quality evidence of learning....

Produce work of an acceptable quality. Communicate a basic understanding of scientific concepts and operate superficially within a scientific contextual framework. Display an emergent level of application when it comes to critical thinking skills. Collect scientific data in an appropriate manner. Be inflexible in the use of knowledge and skills, requiring support even in familiar classroom situations. Make attempts to use knowledge, skills and scientific concepts to solve routine problems, with occasional mistakes.

#### Resources:

# Resources

All notes and material will be provided online within the Class Notebook in MS Teams.

Textbook: BC Science 10 and BC Science 10 Connections

We would like to thank the Coast Salish people, specifically the Skwxwú7mesh Nation and Tsleil-Waututh Nation, on whose unceded traditional territory the North Vancouver School District resides. We value the opportunity to learn, share and grow on this traditional territory.